إدخال مسألة...
الجبر الخطي الأمثلة
خطوة 1
عيّن الصيغة لإيجاد المعادلة المميزة .
خطوة 2
المصفوفة المتطابقة أو مصفوفة الوحدة ذات الحجم هي المصفوفة المربعة التي تكون فيها جميع العناصر الواقعة على القطر الرئيسي مساوية لواحد بينما تكون جميع عناصرها في أي مكان آخر مساوية لصفر.
خطوة 3
خطوة 3.1
عوّض بقيمة التي تساوي .
خطوة 3.2
عوّض بقيمة التي تساوي .
خطوة 4
خطوة 4.1
بسّط كل حد.
خطوة 4.1.1
اضرب في كل عنصر من عناصر المصفوفة.
خطوة 4.1.2
بسّط كل عنصر في المصفوفة.
خطوة 4.1.2.1
اضرب في .
خطوة 4.1.2.2
اضرب .
خطوة 4.1.2.2.1
اضرب في .
خطوة 4.1.2.2.2
اضرب في .
خطوة 4.1.2.3
اضرب .
خطوة 4.1.2.3.1
اضرب في .
خطوة 4.1.2.3.2
اضرب في .
خطوة 4.1.2.4
اضرب في .
خطوة 4.2
اجمع العناصر المتناظرة.
خطوة 4.3
Simplify each element.
خطوة 4.3.1
أضف و.
خطوة 4.3.2
أضف و.
خطوة 5
خطوة 5.1
يمكن إيجاد محدد المصفوفة باستخدام القاعدة .
خطوة 5.2
بسّط المحدد.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 5.2.1.1.1
طبّق خاصية التوزيع.
خطوة 5.2.1.1.2
طبّق خاصية التوزيع.
خطوة 5.2.1.1.3
طبّق خاصية التوزيع.
خطوة 5.2.1.2
بسّط ووحّد الحدود المتشابهة.
خطوة 5.2.1.2.1
بسّط كل حد.
خطوة 5.2.1.2.1.1
اضرب في .
خطوة 5.2.1.2.1.2
اضرب في .
خطوة 5.2.1.2.1.3
اضرب في .
خطوة 5.2.1.2.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 5.2.1.2.1.5
اضرب في بجمع الأُسس.
خطوة 5.2.1.2.1.5.1
انقُل .
خطوة 5.2.1.2.1.5.2
اضرب في .
خطوة 5.2.1.2.1.6
اضرب في .
خطوة 5.2.1.2.1.7
اضرب في .
خطوة 5.2.1.2.2
أضف و.
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.1.4
أضف و.
خطوة 5.2.1.5
اضرب في .
خطوة 5.2.2
اطرح من .
خطوة 6
عيّن قيمة متعدد الحدود المميز بحيث تصبح مساوية لـ لإيجاد القيم الذاتية .
خطوة 7
خطوة 7.1
أضف إلى كلا المتعادلين.
خطوة 7.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 7.3
بسّط .
خطوة 7.3.1
أعِد كتابة بالصيغة .
خطوة 7.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 7.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 7.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 7.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 7.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.